Journal of Forensic Dental Sciences
Users Online: 219 
Home Print this page  Email this page Small font size Default font size Increase font size
Wide layoutNarrow layoutFull screen layout
  Home | About JFDS | Editorial Board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Online submission | Contact us | Advertise | Login 
ORIGINAL ARTICLE
Year : 2013  |  Volume : 5  |  Issue : 2  |  Page : 77-84

In vitro evaluation of a passive radio frequency identification microchip implanted in human molars subjected to compression forces, for forensic purposes of human identification


1 Department of Clinical Basic Science, Faculty of Health Sciences, Pontificia Universidad Javeriana; Department of Oral Rehabilitation, Dentistry School, Universidad del Valle, Cali, Colombia
2 Department of Oral Rehabilitation, Dentistry School, Universidad del Valle, Cali, Colombia

Correspondence Address:
Freddy Moreno
Dentistry School, Universidad del Valle, Cali
Colombia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0975-1475.119766

Rights and Permissions

Objective: To evaluate the in vitro behavior of a passive Radio Frequency Identification (RFID) microchip implanted in human molars subjected to compression forces to determine its technical and clinical viability. Materials and Methods: I n vitro experimental study to evaluate the physical behavior of a passive RFID microchip (VeriChip™) implanted in human molars through resin restoration (Filtek P90™ Silorane 3M-ESPE ® ) to determine the clinical and technical possibilities of the implant and the viability to withstand compression forces exerted by the stomatognathic system during mastication. Results: Through the ANOVA test, it was found that the teeth on which a microchip was implanted show great resistance to compressive forces. It was also evident that teeth with microchips implanted in Class V cavities are more resistant than those implanted in Class I cavities. Conclusions: Although microchip dimensions are big, requiring a sufficiently large cavity, from the biomechanical point of view it is plausible to implant a microchip in a Class V cavity employing restoration material based on resin for forensic purposes of human identification.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed4593    
    Printed69    
    Emailed0    
    PDF Downloaded333    
    Comments [Add]    

Recommend this journal