Tooth as a Source of DNA in Forensic or Investigative Genetics: An Overview

##plugins.themes.academic_pro.article.main##

Nandini D. B.
Juniya Grace Joji

Abstract

Deoxyribonucleic acid (DNA) is the genetic code of most organisms including humans. In the last few years, DNA analysis methods are applied to forensic cases for human identification which is termed forensic or investigative genetics. It is often challenging to obtain and interpret DNA from routine samples like blood in severely decomposed or disfigured bodies recovered from incineration, immersion, trauma, mutilation, and decomposition as in incidents of fire, explosion, or murder. The tooth can survive any extreme environment with minimum risk of contamination making it a valuable alternative source of DNA in such cases. Tooth structures like the enamel (amelogenin protein), dentin, cementum, pulp, and adherent tissues like bone and periodontal fibers are sources from which DNA can be obtained. Various methods have been described for DNA extraction. There are numerous applications of DNA analysis like identification of the deceased or missing victim or the unknown culprit from a crime scene, solving paternity issues, determining the occurrence of any genetic disease, and determining the ancestry. This article briefly summarizes an overview of the tooth as a valuable DNA source and various methods and challenges related to DNA analysis.

##plugins.themes.academic_pro.article.details##

How to Cite
D. B., N. ., & Joji , J. G. (2022). Tooth as a Source of DNA in Forensic or Investigative Genetics: An Overview. Journal of Forensic Dental Sciences, 12(3), 186–196. https://doi.org/10.18311/jfds/12/3/2020.617

References

  1. Gaensslen RE, Harris HA, Lee HC. (2007) Introduction to Forensics & Criminalistics; New York: McGraw-Hill Companies, Inc.
  2. Watson JD, Crick FHC. A structure for deoxyribose nucleic acid. Nature. 1953;171:737-8. https://doi.org/10.1038/171737a0 PMid:13054692 DOI: https://doi.org/10.1038/171737a0
  3. Mayall SS, Agarwal P, Vashisth P. Dental DNA fingerprinting in identification of human remains. Ann Dent Spec 2013; 1:16-9.
  4. Jeffreys AJ, Wilson V, Thein SL. Hypervariable ‘minisatellite’ regions in human DNA. Nature. 1985; 314:67-73. https://doi.org/10.1038/314067a0 PMid:3856104 DOI: https://doi.org/10.1038/314067a0
  5. Acharya AB. Role of forensic odontology in disaster victim identification in the Indian context. J Dent Specialities 2015; 3:89-91.
  6. ABabu RS, Rose D. Molecular advancements in forensic. odontology. West Indian Med J 2016; 65:369-74. https://doi.org/10.7727/wimj.2014.109 PMid:26645597 DOI: https://doi.org/10.7727/wimj.2014.109
  7. Sweet D. Forensic dental identification. Forensic Sci Int. 2010; 201:3-4. https://doi.org/10.1016/j.forsciint.2010.02.030 PMid:20304570 DOI: https://doi.org/10.1016/j.forsciint.2010.02.030
  8. Pittayapat P, Jacobs R, De Valck E, Vandermeulen D, Willems G. Forensic odontology in the disaster victim identification process. J Forensic Odontostomatol. 2012; 30:1-12.
  9. Buckleton J, Triggs C, Clayton T. In John Buckleton, Christopher M. Triggs, Simon J. Walsh editors. Disaster victim identification, identification of missing persons, and immigration cases in forensic DNA evidence interpretation. CRC Press Washington, D.C; 2005. p. 4068. https://doi.org/10.1201/9781420037920.ch11 DOI: https://doi.org/10.1201/9781420037920.ch11
  10. Higgins D, Austin JJ. Teeth as a source of DNA for forensic identification of human remains: A review. Sci Justice. 2013; 53:433-41. https://doi.org/10.1016/j.scijus.2013.06.001 PMid:24188345 DOI: https://doi.org/10.1016/j.scijus.2013.06.001
  11. Higgins D, Kaidonis J, Austin J, Townsend G, James H, Hughes T. Dentine and cementum as sources of nuclear DNA for use in human identification. Aust J Forensic Sci. 2011; 43:287-95. https://doi.org/10.1080/00450618.2011.583278 DOI: https://doi.org/10.1080/00450618.2011.583278
  12. Nunn S. Touch DNA collection versus firearm fingerprinting: Comparing evidence production and identification outcomes. J Forensic Sci. 2013; 58:601-8. https://doi.org/10.1111/1556-4029.12119 PMid:23458456 DOI: https://doi.org/10.1111/1556-4029.12119
  13. Schwartz TR, Schwartz EA, Mieszerski L, McNally L, Kobilinsky L. Characterization of DNA obtained from teeth subjected to various environmental conditions. J Forensic Sci. 1991; 36:979-90. https://doi.org/10.1520/JFS13113J PMid:1680960 DOI: https://doi.org/10.1520/JFS13113J
  14. Butler J M. Forensic DNA Typing: Biology, technology and genetics of STR markers. San Diego: Academic Press; 2005.
  15. Corte-Real A, Anjos MJ, Vieira DN, Gamero JJ. The tooth for molecular analysis and identification: A forensic approach. J Forensic Odontostomatol. 2012; 30:22-8.
  16. Sweet DJ, Sweet CH. DNA analysis of dental pulp to link incinerated remains of homicide victim to crime scene. J Forensic Sci. 1995; 40:310-4. https://doi.org/10.1520/JFS15365J DOI: https://doi.org/10.1520/JFS15365J
  17. Sumalatha S, Padmaja S, Thumati P. Every contact leaves its trace: Insight into recent advances of forensic odontology.J Cancer Treat Res. 2015; 3:1-7. https://doi.org/10.11648/j.jctr.20150301.11 DOI: https://doi.org/10.11648/j.jctr.20150301.11
  18. Prathab DK. Age estimation in Forensic Odontology. Int J Prosthodont Restor Dent. 2017; 7:21-4.
  19. Sweet D, Lorente M, Valenzuela A, Lorente JA, Alvarez JC. Increasing DNA extraction yield from saliva strains with a modified Chelex method. Forensic Sci Int. 1996; 83:16777. https://doi.org/10.1016/S0379-0738(96)02034-8 DOI: https://doi.org/10.1016/S0379-0738(96)02034-8
  20. Malaver PC, Yunis JJ. Different dental tissues as source of DNA for human identification in forensic cases. Croat Med J. 2003; 44:306-9.
  21. Senn DR, Stimson PG. Forensic Dentistry. 2nd ed. Boca Raton: CRC Press; 2010. p. 103-39. https://doi.org/10.4324/9780429292767 DOI: https://doi.org/10.4324/9780429292767
  22. Gaytmenn R, Sweet D. Quantification of forensic DNA from various regions of human teeth. J Forensic Sci. 2003; 48:622-5. https://doi.org/10.1520/JFS2002372 PMid:12762534 DOI: https://doi.org/10.1520/JFS2002372
  23. Chowdhury RM, Singhvi A, Bagul N, Bhatia S, Singh G, Goswami S. Sex determination by amplification of amelogenin gene from dental pulp tissue by polymerase chain reaction. Indian J Dent Res. 2018; 29:470-6. https://doi.org/10.4103/ijdr.IJDR_274_17 PMid:30127199 DOI: https://doi.org/10.4103/ijdr.IJDR_274_17
  24. Kumal S. Tooth pulp: A foundation for DNA Analysis. J Forensic Res. 2012; 3-7 25. Takasaki T, Tsuji A, Ikeda N, Ohishi M. Age estimation in dental pulp DNA based on human telomere shortening. Int J Legal Med. 2003; 117:232-4. https://doi.org/10.1007/s00414-003-0376-5 PMid:12838429 DOI: https://doi.org/10.1007/s00414-003-0376-5
  25. Komuro T, Nakamura M, Tsutsumi H, Mukoyama R. Gender determination from dental pulp by using capillary gel electrophoresis of amelogenin locus. J Forensic Odontostomatol. 1998; 16:23-6.
  26. Pötsch L, Meyer U, Rothschild S, Schneider PM, Rittner C. Application of DNA techniques for identification using human dental pulp as a source of DNA. Int J Legal Med. 1992; 105:139-43. https://doi.org/10.1007/BF01625165 PMid:1419874 DOI: https://doi.org/10.1007/BF01625165
  27. Yukseloglu EH, Dastan K, Yonar FC, Rayimoglu G, Karatas O, Islek DS et al. The comparison of DNA extraction techniques in human bone and tooth samples exposed to high heat. Med Science. 2019; 8:489-95. https://doi.org/10.5455/medscience.2019.08.9051 DOI: https://doi.org/10.5455/medscience.2019.08.9051
  28. Remualdo VR. Assessment of three methods of extraction of DNA of teeth of humans subjected to heat (dissertation), São Paul SP: Faculty of Dentistry, University of São Paul. 2004.
  29. Datta P, Sood S, Rastogi P, Bhargava K, Bhargava D, Yadav M. DNA Profiling in Forensic Dentistry. J Indian Acad Forensic Med. 2012; 34:155-8.
  30. Romeika JM, Yan F. Recent Advances in forensic DNA analysis. J Forensic Res. 2013; S12: 001. https://doi.org/10.4172/2157-7145.S12-001 DOI: https://doi.org/10.4172/2157-7145.S12-001
  31. Sweet D, Lorente M, Lorente JA, Valenzuela A, Villanueva E. An improved method to recover saliva from human skin: the double swab technique. J Forensic Sci. 1997; 42:320-2. https://doi.org/10.1520/JFS14120J PMid:9068193 DOI: https://doi.org/10.1520/JFS14120J
  32. Gibbs RA. DNA amplification by the polymerase chain reaction. Anal Chem. 1990; 62:1202–14. https://doi.org/10.1021/ac00212a004 PMid:2196835 DOI: https://doi.org/10.1021/ac00212a004
  33. Chaudhary RB, Shylaja MD, Patel A, Patel A. DNA in forensic odontology: New phase in dental analysis. Int J Forensic Odontol. 2020; 5:43-7.
  34. Sankari SL, Jimson S, Masthan K, Jacobina J. Role of DNA profiling in forensic odontology. J Pharm Bioall Sci. 2015; 7:S138-41. https://doi.org/10.4103/0975-7406.155863 PMid:26015692 PMCid:PMC4439652 DOI: https://doi.org/10.4103/0975-7406.155863
  35. Girish K, Rahman FS, Tippu SR. Dental DNA fingerprinting in identification of human remains. J Forensic Dent Sci. 2010; 2:63-8. https://doi.org/10.4103/0975-1475.81284 PMid:21731342 PMCid:PMC3125955 DOI: https://doi.org/10.4103/0975-1475.81284
  36. Roewer L. DNA fingerprinting in forensics: past, present, future. Investigative Genetics. 2013; 4:22.
  37. https://doi.org/10.1186/2041-2223-4-22 PMid:24245688 PMCid:PMC3831584 DOI: https://doi.org/10.1186/2041-2223-4-22
  38. Weedn WV. DNA Identification, in Forensic Dentistry, edited by Stimson PG and Mertz CA. Boca Raton, FL: CRC Press; 1997. p. 37-46.
  39. Comey CT, Koons BW, Presley KW, Smerick JB, Sobieralski CA, Stanley DM, et al. Extraction strategies for amplified fragment length polymorphism analysis. JFSCA. 1994; 39:1254-69. https://doi.org/10.1520/JFS13711J DOI: https://doi.org/10.1520/JFS13711J
  40. Gill P, Fereday L, Morling N. Schneider PM: The evolution of DNA databases- Recommendations for new European STR loci. Forensic Sci Int. 2006; 156:242-4. https://doi.org/10.1016/j.forsciint.2005.05.036 PMid:16002250 DOI: https://doi.org/10.1016/j.forsciint.2005.05.036
  41. Budowle B, Moretti TR, Niezgoda SJ, Brown BL: CODIS and PCR-based short tandem repeat loci: Law enforcement tools. Proceedings of the Second European Symposium on Human Identification. Madison, WI: Promega Corporation; 1998. p. 73-88.
  42. Willuweit S, Roewer L, International Forensic Y Chromosome User Group: Y chromosome haplotype reference database (YHRD): Update. Forensic Sci Int Genet. 2007; 1:83-7. https://doi.org/10.1016/j.fsigen.2007.01.017 PMid:19083734 DOI: https://doi.org/10.1016/j.fsigen.2007.01.017
  43. Gu S, Li S. X-chromosome STRs analysis of Ewenke ethnic population. Forensic Sci Int. 2006; 158:72-5. https://doi.org/10.1016/j.forsciint.2005.04.026 PMid:16280222 DOI: https://doi.org/10.1016/j.forsciint.2005.04.026
  44. Kang L, Li S. X-chromosome STR polymorphism of Luoba ethnic group living in Tibet (SW China). Forensic Sci Int. 2006; 156:88-90. https://doi.org/10.1016/j.forsciint.2005.01.008 PMid:16309866 DOI: https://doi.org/10.1016/j.forsciint.2005.01.008
  45. Parson W, Dür A: EMPOP-A forensic mtDNA database. Forensic Sci Int Genet. 2007; 1:88-92. https://doi.org/10.1016/j.fsigen.2007.01.018 PMid:19083735 DOI: https://doi.org/10.1016/j.fsigen.2007.01.018
  46. SNP Fact Sheet. Human genome project. U.S. Department of Energy genome Program’s biological and environmental research information system (BERIS). Available from: http://www.ornl.gov/sci/techresources/Human_Genome/faq/snps.shtml
  47. Dutta P, Bhosale S, Singh R, Gubrellay P, Patil J, Sehdev B, et al. Amelogenin gene the pioneer in gender determination from forensic dental samples. J Clin Diagn Res. 2017; 11:ZC56 9. https://doi.org/10.7860/JCDR/2017/22183.9407 PMid:28384982 PMCid:PMC5376882 DOI: https://doi.org/10.7860/JCDR/2017/22183.9407
  48. Ye L, Le TQ, Zhu L, Butcher K, Schneider RA, Li W, et al. Amelogenins in human developing and mature dental pulp. J Dent Res. 2006; 85:814 8. https://doi.org/10.1177/154405910608500907 PMid:16931863 PMCid:PMC2243219 DOI: https://doi.org/10.1177/154405910608500907
  49. Muruganandhan J, Sivakumar G. Practical aspects of DNA based forensic studies in dentistry. J Forensic Dent Sci. 2011; 3:38 45. https://doi.org/10.4103/0975-1475.85295 PMid:22022138 PMCid:PMC3190439 DOI: https://doi.org/10.4103/0975-1475.85295
  50. Frumkin D, Wasserstrom A, Budowle B, Davidson A. DNA methylation-based forensic tissue identification. Forensic Sci Int Genet. 2011; 5:517-24. https://doi.org/10.1016/j.fsigen.2010.12.001 PMid:21196138 DOI: https://doi.org/10.1016/j.fsigen.2010.12.001
  51. Kashkary L, Kemp C, Shaw KJ, Greenway GM, Haswell SJ. Improved DNA extraction efficiency from low level cell numbers using a silica monolith based micro fluidic device. Anal Chim Acta. 2012; 750:127-31. https://doi.org/10.1016/j.aca.2012.05.019 PMid:23062434 DOI: https://doi.org/10.1016/j.aca.2012.05.019
  52. Pan D, Mi L, Huang Q, Hu J, Fan C. Genetic analysis with nano PCR. Integr Biol (Camb). 2012; 4:1155-63. https://doi.org/10.1039/c2ib20076g PMid:22907590 DOI: https://doi.org/10.1039/c2ib20076g
  53. Allen M, Nilsson M, Havsjö M, Edwinsson L, Granemo J, Bjerke M: Haloplex and MiSeq NGS for simultaneous analysis of 10 STRs, 386 SNPs and the complete mtDNAgenome, Presentation at the 25th Congress of the International Society for Forensic Genetics. Melbourne; 2-7 September 2013.
  54. Sweet D, Hildebrand D. Recovery of DNA from human teeth by cryogenic grinding. J Forensic Sci. 1998; 43:1199202. https://doi.org/10.1520/JFS14385J PMid:9846398 DOI: https://doi.org/10.1520/JFS14385J
  55. Nigam P, Grewal P, Singh VP, Prasad K, Tak J, Sinha A. Cryogenic grinding : An insight into the new era. Int J Dent Med Res. 2014; 1:129-31.
  56. Alakoc YD, Aka PS. Orthograde entrance technique to recover DNA from ancient teeth preserving the physical structure. Forensic Sci Int. 2009; 188:96-8. https://doi.org/10.1016/j.forsciint.2009.03.020 PMid:19398173 DOI: https://doi.org/10.1016/j.forsciint.2009.03.020
  57. Balla SB. Forensic Dental Identification: Practice in Indian context compared to Western countries. J Forensic Sci Med. 2016; 2:44-7. https://doi.org/10.4103/2349-5014.161629 DOI: https://doi.org/10.4103/2349-5014.161629
  58. Gupta R, Gupta S, Gupta M. Journey of DNA Evidence in legal arena: An insight on its legal perspective worldwide and highlight on admissibility in India. J Forensic Sci Med. 2016; 2:102-6. https://doi.org/10.4103/2349-5014.184196 DOI: https://doi.org/10.4103/2349-5014.184196
  59. Lee SB, Clabaugh KC, Silva B, Odigie KO, Coble MD,Loreille O, et al. Assessing a novel room temperature DNA storage medium for forensic biological samples. Forensic Sci Int Genet. 2012; 6:31-40. https://doi.org/10.1016/j.fsigen.2011.01.008 PMid:21324769 DOI: https://doi.org/10.1016/j.fsigen.2011.01.008
  60. Ansell R. Internal quality control in forensic DNA analysis. Accred Qual Assur. 2013; 18:279-89. https://doi.org/10.1007/s00769-013-0968-9 DOI: https://doi.org/10.1007/s00769-013-0968-9
  61. Rohland N, Hofreiter M. Ancient DNA extraction from bones and teeth. Nat Protoc. 2007; 2: 1756-62. https://doi.org/10.1038/nprot.2007.247 PMid:17641642 DOI: https://doi.org/10.1038/nprot.2007.247
  62. Rudin N, Inman K. An introduction to forensic DNA analysis. 2nd ed. Washington: CRC Press; 2001 https://doi.org/10.4324/9780367802806 DOI: https://doi.org/10.4324/9780367802806
  63. Izawa H ,Tsutsumi H, Maruyama S, Komuro T. DNA analysis of root canal-filled teeth. Leg Med. 2017; 27:10-18. https://doi.org/10.1016/j.legalmed.2017.05.001 PMid:28623801 DOI: https://doi.org/10.1016/j.legalmed.2017.05.001
  64. Khare A, Saxena V, Jain M, Tiwari V, Santha B, Sharva V. Dental tissue as an imperative marker for human identification in mass disaster. Int J Forensic Odontol. 2018; 3:26-9. https://doi.org/10.4103/ijfo.ijfo_18_17 DOI: https://doi.org/10.4103/ijfo.ijfo_18_17
  65. Jayalakshmi B, Avinash Tejasvi ML. ABO genotyping from pulp and dentin using DNA - A PCR study. J Forensic Dent Sci. 2020; 12:1-9. https://doi.org/10.18311/jfds/12/1/2020.2 DOI: https://doi.org/10.18311/jfds/12/1/2020.2
  66. Pai KR, Bhat SS, Salman A, Hegde S. Blood group determination using DNA extracted from exfoliated
  67. primary teeth at various time durations and temperatures: A PCR study. Int J Clin Pediatr Dent. 2016; 9:308-12. https://doi.org/10.5005/jp-journals-10005-1383 PMid:28127161 PMCid:PMC5233696 DOI: https://doi.org/10.5005/jp-journals-10005-1383
  68. Beyleveld D. Ethical issues in the forensic applications of DNA analysis. Forensic Sci Int. 1997; 88:3 15. https://doi.org/10.1016/S0379-0738(97)00078-0 DOI: https://doi.org/10.1016/S0379-0738(97)00078-0
  69. Ge J, Yan JW, Budowle B, Chakarborty R, Eisenberg A. Issues on China forensic DNA database. Chin J Forensic Med. 2011; 26:252-5.
  70. Joy S, Bastian TS, Selvamani M, Abraham S. India-National DNA offender database as tool for criminal surveillance: Need for public debate!!! J Med Radiol Pathol Surg. 2018; 5:11-4. https://doi.org/10.15713/ins.jmrps.130 DOI: https://doi.org/10.15713/ins.jmrps.130
  71. Kumar S, Verma K.A, Prathibha S, Raghavendra S. Current scenario of forensic DNA databases in or outside India and their relative risk. Egypt J Forensic Sci. 2016; 6:1-5. https://doi.org/10.1016/j.ejfs.2015.03.002 DOI: https://doi.org/10.1016/j.ejfs.2015.03.002
  72. Chhibber M. Govt Crawling on DNA Profiling Bill, CBI urges it to Hurry, Cites China. The Indian Express; 2010. Available from: http://www.indianexpress.com/news/govt-crawling-ondna-profiling-bill-cbi-urges-it-to-hurrycites-china/645247/0